Search

Nanoparticle Size Analyzer NANOTRAC FLEX

Request a quote
Create PDF

Language:

Microtrac’s NANOTRAC Flex is a highly flexible nanoparticle size analyzer based on Dynamic Light Scattering (DLS) which provides information on particle size, concentration, and molecular weight. It allows faster measurements with reliable technology, higher precision, and better accuracy. All of this combined into a compact DLS analyzer with a revolutionary fixed optical probe.

With the unique and flexible probe design and the use of the Laser Amplified Detection method in the NANOTRAC FLEX, the user is able to choose an appropriate vessel as a measurement cell to satisfy the needs of any application. This design also allows measurements of samples over a wide concentration range, monomodal or multimodal samples, all without prior knowledge of the particle size distribution. This is made possible through the use of the Frequency Power Spectrum (FPS) method instead of classical Photon Correlation Spectroscopy (PCS).

The STABINO ZETA provides very fast, precise, and reproducible zeta potential measurements due to its high resolution and data point density, respectively. The STABINO ZETA can measure the zeta potential of particles in a range of 0.3 nm to 300 µm, with a concentration range of up to 40% by volume.

Thanks to the unique measurement technology, the STABINO ZETA can determine five parameters simultaneously within a few seconds. In combination with Microtrac’s DLS analyzer, NANOTRAC FLEX, the size can be measured at the same time, in the same sample.

In addition, the STABINO ZETA has a built-in titration function where all the parameters are analyzed simultaneously at every dosage step. The determination of the isoelectric point is one of the possibilities of titration and is completed within a few minutes.

Zeta Potential Analyzer Stabino Zeta

Nanoparticle Size Analyzer NANOTRAC FLEX Typical Applications

Versatility is a great strength of Dynamic Light Scattering (DLS). This makes the method suitable for a variety of applications in both research and industry, such as pharmaceuticals, colloids, microemulsions, polymers, industrial minerals, inks and many more.

pharmaceuticals

pharmaceuticals

  • pharmaceuticals
  • inks
  • life sciences
  • ceramics
  • beverages & food
emulsions

emulsions

  • colloids
  • polymers
  • microemulsions
  • cosmetics
  • chemicals
steel

steel

  • environment
  • adhesives
  • metals
  • industrial minerals

    ... and many more!

Intuitive Use With Just a Few Clicks DIMENSIONS LS for NANOTRAC Series

The DIMENSIONS LS software comprises five clearly structured Workspaces for easy method development and operation of the NANOTRAC instrument. Results display and evaluation of multiple analyses are possible in the corresponding workspaces, even during ongoing measurements.

  • Simple method development
  • Clearly structured result presentation
  • Various evaluation options
  • Intuitive workflow
  • Extensive data export
  • Multi-user capability
.

Citations

Our instruments are recognized as the benchmark tools for a wide range of application fields in science and research. This is reflected by the extensive citations in scientific publications. Feel free to download and share the articles provided below.

.

Nanoparticle Size Analyzer NANOTRAC FLEX Functional Principle

The optical bench of the nanoparticle size analyzer NANOTRAC FLEX is a probe containing an optical fiber coupled with a Y splitter. Laser light is focused on a volume of sample at the interface of the probe window and the dispersion. The high reflectivity sapphire window reflects a portion of the laser beam back to a photodiode detector. The laser light also penetrates the dispersion and the particle’s scattered light reflects at 180 degrees back to the same detector.

The scattered light from the sample has a low optical signal relative to the reflected laser beam. The reflected laser beam mixes with the scattered light from the sample, adding the high amplitude of the laser beam to the low amplitude of the raw scatter signal. This Laser Amplified Detection method provides up to 106 of times the signal to noise ratio of other DLS methods like Photon Correlation Spectroscopy (PCS) and NanoTracking (NT).

A Fast Fourier Transform (FFT) of the Laser Amplified Detection signal results in a linear frequency power spectrum which is then transformed into logarithmic space and deconvoluted to give the resulting particle size distribution. Combined with Laser Amplified Detection, this frequency power spectrum calculation provides robust calculation of all types of particle size distributions – narrow, broad, mono- or multi-modal – with no need for a priori information for algorithm fitting as it is for PCS.

Microtrac's Laser Amplified Detection method is unaffected by signal aberrations due to contaminants in the sample. Classical PCS instruments need to either filter the sample or create complicated measurement methods to eliminate these signal aberrations.

Introduction to Dynamic Light Scattering (DLS) - Functional Principle

1. Detector |  2. Reflected laser beam & scattered light |  3. Sapphire window |  4. Y-beam splitter |  5. GRIN lens |  6. Sample | 7. Laser beam in optical fiber |  8. Laser

Iterative Particle Size Calculation from Power Spectrum

Iterative Particle Size Calculation from Power Spectrum

1. Estimate size distribution | 2. Calculate estimated particle size | 3. Calculate error in particle size | 4. Correct estimated distribution | 5. Repeat 1-4 until error is minimized | 6. Minimum error distribution is best fit

Content may be subject to modifications or corrections