Компания Microtrac уже более 40 лет является мировым лидером в области лазерного дифракционного приборостроения - постоянно совершенствуя приборную технику, мы предлагаем клиентам широкий ассортимент лазерных дифракционных приборов, которые идеально подходят для определения размеров и характеристик частиц.
Лазерный дифракционный анализ, также известный как статическое светорассеяние, является наиболее распространенным методом, отличным от ситового анализа, для определения распределения частиц по размерам.
Лазерный дифракционный анализ, также известный как статическое светорассеяние, является наиболее распространенным методом определения распределения частиц по размерам, отличным от традиционного ситового анализа. Метод основан на отклонении лазерного луча множеством частиц, рассеянных в потоке жидкости или воздуха. Углы дифракции или рассеяния характеризуют размер частиц. ISO 13320 всесторонне описывает методологию лазерной дифракции. Ниже объясняются преимущества и ограничения, а также рабочие механизмы и теория, лежащие в основе технологии лазерной дифракции. Microtrac была самой первой компанией, которая начала разрабатывать, производить и продавать коммерческие лазерные дифракционные анализаторы, начиная с 1970-х годов. С тех пор мы являемся технологическим лидером, постоянно продвигающим инновации.
Современные лазерные дифракционные анализаторы определяют распределение частиц по размерам в очень широком динамическом диапазоне измерений. Обычно покрывается диапазон размеров от 10 нм до 4 мм, что соответствует коэффициенту 400000 между самыми мелкими и самыми крупными измеряемыми частицами. Однако на практике лазерная дифракция обычно применяется в диапазоне размеров около 30 нм - 1000 мкм. Следует отметить, что этот широкий диапазон измерений всегда полностью доступен в современных измерительных приборах. Нет необходимости в предварительной регулировке диапазона размеров, например, путем смещения линз или выбора подходящей оптики.
Лазерная дифракция используется во многих различных отраслях промышленности для рутинного анализа и контроля качества, а также для сложных задач исследований и разработок. Это также связано с тем, что как влажные образцы, то есть суспензии и эмульсии, так и сухие порошки могут быть легко охарактеризованы лазерной дифракцией. При влажном измерении мощные рециркуляторы и насосные системы, обычно со встроенными ультразвуковыми зондами, обеспечивают эффективную гомогенизацию, так что во многих случаях пробоподготовка может быть полностью выполнена в приборе. При сухом измерении частицы разделяются соплом Вентури в воздушном потоке.
Короткое время измерения является основным преимуществом лазерной дифракции. Процедура анализа, использующая в качестве примера измерение вмокрую, включает в себя: 1. Заполнение прибора диспергирующей жидкостью с помощью автонасоса. 2. Выполнение холостого измерения (без частиц образца). 3. Добавление образца. 4. Измерение (сбор данных дифракционного сигнала), 5. Очистка прибора с помощью функции автоматической промывки. Весь цикл измерения занимает 1-2 минуты, в зависимости от использования ультразвука и количества циклов очистки. В случае измерения всухую время измерения составляет 10 - 40 секунд.
Использование СРП гарантирует, что анализ с помощью лазерной дифракции всегда выполняется в одних и тех же условиях. Это практически исключает ошибки оператора и гарантирует высокую воспроизводимость даже между анализаторами установленными в разных местах. Точность лазерной дифракции может быть проверена с помощью стандартов. Требования (по точности и воспроизводимости) указаны в стандарте ISO 13320 и обычно значительно превышаются. Кстати, калибровка приборов пользователями не требуется.
Лазерные дифракционные приборы характеризуются большой надежностью и низкими требованиями к техническому обслуживанию. Метод практически не подвержен внешним помехам, и многие приборы находятся на производственных объектах. Однако для дальнейшего снижения необходимого технического обслуживания лазерного дифракционного анализатора он в идеале должен быть оснащен диодными лазерами с длительным сроком службы. Многие приборы до сих пор используют HeNe-лазеры, которые имеют значительно меньший срок службы по сравнению с лазерными диодами. Эти газовые лазеры HeNe должны регулярно заменяться и требуют времени прогрева.
Когда лазерный луч (монохроматический, когерентный, поляризованный) попадает на препятствие, возникают дифракционные явления. Дифракция происходит, например, в отверстиях, щелях, решетках и частицах. От краев частицы свет распространяется в виде сферических волновых фронтов, интерференция которых затем приводит к наблюдаемым дифракционным явлениям. Угол дифракции определяется длиной волны света и размером частицы, причем углы дифракции становятся меньше с увеличением размера частицы (Рис. 2). Для более мелких частиц характерные дифракционные максимумы исчезают, и в этом случае их чаще называют рассеянием. Однако картина рассеянного света зависит от размера даже для этих малых частиц: чем крупнее частица, тем больше света она рассеивает и тем больше рассеивается в прямом направлении (Рис. 4). Для очень мелких частиц рассеянный свет слабее и почти изотропен (одинаков во всех пространственных направлениях).
При анализе методом лазерной дифракции рассеянный или дифрагированный свет регистрируется в максимально широком диапазоне углов с помощью специального лазерно-детекторного устройства. Оценка этого сигнала основана на принципе, что большие частицы имеют тенденцию рассеивать свет на малые углы, а малые частицы имеют максимум рассеянного света на больших углах. При оценке сигнала необходимо учитывать, что размер частиц не соответствует определенному углу, а что каждая частица рассеивает свет во всех направлениях, только с разной интенсивностью. Таким образом, это косвенный метод измерения, поскольку размер частицы не измеряется непосредственно, а вычисляется с помощью вторичного свойства (дифракционной картины). Кроме того, регистрируемая дифракционная картина генерируется частицами разных размеров одновременно, поэтому она представляет собой суперпозицию рассеянного света многих частиц разных размеров. Поэтому лазерная дифракция является так называемым совокупным методом измерения. Во время оценки все сигналы обрабатываются так, как если бы они были сгенерированы идеальными сферическими частицами. Форма частиц не обнаруживается. Неcферическая форма частиц приводит к более широкому распределению размеров, поскольку как ширина, так и длина частиц вносят свой вклад в общий сигнал рассеяния и включаются в результат.
Верхний предел диапазона измерения лазерной дифракции определяется тем, что с увеличением размера частиц углы дифракции становятся все меньше и меньше. В результате небольшие различия между размерами частиц труднее обнаружить метрологически, а разрешение лазерной дифракции уменьшается. Нижняя граница диапазона измерений определяется слабой интенсивностью рассеянного света от мелких частиц. Использование коротковолнового света, который приносит большую интенсивность рассеяния, может расширить диапазон измерения лазерной дифракции до меньшего размера частиц. Именно поэтому многие лазерные дифракционные анализаторы используют красные и синие источники света.
Согласно ISO 13320, измерительные приборы для лазерной дифракции могут работать как с Фурье-оптикой, так и с обратной Фурье-оптикой. При Фурье-оптике частицы освещаются параллельным пучком, тогда как при обратном Фурье-расположении используется сходящийся лазерный луч. Преимущество Фурье-оптики заключается в том, что дифракционный сигнал всегда правильно детектируется независимо от положения частицы в лазерном луче, и в любой точке исследуемого объема образца преобладают равные условия дифракции. При обратной установке Фурье поток частиц должен быть относительно узким, и, кроме того, частицы одинакового размера в сходящемся пучке имеют разные углы дифракции относительно оптической оси. Все это обычно приводит к размытым дифракционным картинам по сравнению с оптикой Фурье. Преимущество обратного метода Фурье состоит в том, что на меньшем массиве детекторов можно собрать более широкий угловой диапазон. Однако при соответствующей конструкции угловой диапазон 0-163 ° также может быть покрыт с помощью Фурье оптики. Поэтому в лазерных дифракционных анализаторах производства Microtrac используется схема Фурье.
Лазерная дифракция с преобразованием Фурье (слева, MICROTRAC) и обратное преобразование Фурье (справа)
"Лазерная дифракция" и "статический анализ светорассеяния" часто используются взаимозаменяемо, хотя термин "лазерная дифракция" утвердился во многих отраслях промышленности и лабораториях. Дифракция дает максимумы и минимумы в распределении интенсивности под характерными углами. Это распределение описывается так называемой теорией Фраунгофера. Преимущество приближения Фраунгофера состоит в том, что не требуется знать никаких других свойств материала образца. Однако этот подход неприменим для более мелких и прозрачных частиц, так как здесь оптические свойства частиц также оказывают влияние на распределение интенсивности на детекторах. Эти оптические свойства, по существу показатель преломления, должны быть известны для оценки распределения частиц по размерам. Такого рода оценка производится в соответствии с теорией Ми, названной в честь физика Густава Ми. Строго говоря, дифракция Фраунгофера является лишь частным случаем теории Ми, которая всесторонне описывает все явления дифракции и светорассеяния.
Картина светорассеяния меняется в зависимости от размера частиц. Для частиц с диаметром d, значительно превышающим длину волны света, применима аппроксимация Фраунгофера. Для более мелких частиц необходимо использовать оценку Ми. Рассеяние от очень мелких частиц называется Рэлеевским рассеянием.
Лазерная дифракция (ЛД) - это технология измерения для определения распределения частиц по размерам. В этом методе лазерный луч перенаправляется множеством частиц, рассеянных в потоке жидкости или воздуха. Результирующая картина отклонения углов светорассеяния лазера характерна для размера частиц материала и регистрируется соответствующим датчиком.
Принцип измерения Лазерной Дифракции (ЛД) описан в стандарте ISO 13320. Представление результатов анализа размера частиц описано в стандарте ISO 9276-6.
Типичное измерение с помощью метода Лазерной Дифракции (ЛД) обычно занимает 1-2 минуты для частиц, диспергированных в жидкости. Сухие измерения частиц, диспергированных в воздушном потоке с использованием лазерной дифракции, выполняются еще быстрее, время измерения всего 10-40 секунд.
Преимущества метода Лазерной Дифракции (ЛД) включают широкий диапазон измерений (от 10 нм до 4 мм), большую универсальность (подходит для многих различных материалов), высокую пропускную способность образцов, простоту в эксплуатации, точность и воспроизводимость, а также общую надежность лазерных дифрактометров.
Как правило, лазерные дифрактометры (ЛД) охватывают диапазон размеров частиц от 10 нм до 4 мм. Это соответствует коэффициенту 400 000 между самыми маленькими и самыми большими измеряемыми частицами. В большинстве применений лазерная дифракция (ЛД) обычно используется для распределения частиц по размерам от 30 нм до 1 мм.
Лазерное дифрактометры (ЛД) обычно используется в исследованиях или контроле качества. В научных исследованиях лазерные дифрактометры (ЛД) используются для исследования и разработки новых материалов; в контроле качества они используются для обеспечения постоянного соблюдения соответствующих свойств выпускаемой продукции.